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Abstract

Gradient elasticity for a second gradient model is addressed within a suitable thermodynamic framework apt to

account for nonlocality. The pertinent thermodynamic restrictions upon the gradient constitutive equations are derived,

which are shown to include, besides the field (differential) stress–strain laws, a set of nonstandard boundary conditions.

Consistently with the latter thermodynamic requirements, a surface layer with membrane stresses is envisioned in the

strained body, which together with the above nonstandard boundary conditions make the body constitutively insulated

(i.e. no long distance energy flows out of the boundary surface due to nonlocality). The total strain energy is shown to

include a bulk and surface strain energy. A minimum total potential energy principle is provided for the related

structural boundary-value problem. The Toupin–Mindlin polar-type strain gradient material model is also addressed

and compared with the above one, their substantial differences are pointed out, particularly for what regards the

constitutive equations and the boundary conditions accompanying the solving displacement equilibrium equations. A

gradient one-dimensional bar sample in tension is considered for a few applications of the proposed theory.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the 1960s, within the framework of polar and multipolar continua, the so-called strain-gradient

elasticity theories, Truesdell and Toupin (1960), Toupin (1962), particularly in their linearized forms,

Mindlin (1964, 1965), Mindlin and Eshel (1968), Green and Rivlin (1964), were most popular. In the latter

theories, the material strain state is described by a set of nþ 1 strain tensors, say eðmÞ (m ¼ 0; 1; . . . ; n), in
which eð0Þ identifies with the usual (small, second-order) strain tensor e ðeð0Þ � e), and the other eðmÞ are

higher order strain tensors defined as spatial gradients either of the displacement field, that is
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where rm :¼ foi1oi2 . . . oimg is the mth-order gradient and rs the symmetric part of r. Analogously, the

related stress state is described by a set of nþ 1 stress tensors, say rðmÞ (m ¼ 0; 1; . . . ; n), which are work-

conjugate of the eðmÞ and rð0Þ identifies with the usual (Cauchy) stress tensor.

At the constitutive level, however, the differential relations (1), or (2), are ignored, and the strain tensors,
eðmÞ, are all considered independent of one another, what seems appropriate for an adequate description of

the deformation capabilities of a continuum simulating a particulate microstructure. In this way, the

material strain and stress states are locally described by the two above sets of strain and stress tensors,

namely eðmÞ and rðmÞ (m ¼ 0; 1; . . . ; n), and, under certain (stability) conditions, there is a one-to-one stress–

strain correspondence. This implies that the gradient theory in question––though, as a special polar con-

tinuum theory, is endowed with one or more internal length parameters––proves to be a local theory in the

sense that the stress state at a point depends only on the strain state at the same point, like for the classical

Hookean theory.
Main research issues inherent in the aforementioned (Toupin–Mindlin) gradient elasticity theory were

the correct way to write the displacement equilibrium equations and the related boundary conditions (to

this purpose, the compatibility relations (1) played a crucial role), as well as the assessment of the appro-

priate multipolar body and surface forces constituting the loading data in the relevant boundary-value

problem. Of particular interest was the formulation of the extra boundary conditions required by the higher

order partial differential equations (PDEs) governing the problem, Mindlin (1964, 1965), Mindlin and Eshel

(1968), Wu (1992).

It is worth observing that these extra boundary conditions play, within the gradient elasticity theory in
question, the same role as the other boundary conditions, that is, as the standard boundary conditions in

the classical Hookean boundary value-problem. Their purpose is in fact that of introducing the boundary

data into the problem formulation, as a rule through an alternative as follows: at every point of the boundary

surface, either a (polar) force, or the work-conjugate displacement, is to be specified. Mindlin (1965) derived

the equilibrium equations and the boundary conditions (including the extra ones) for a second strain

gradient elasticity theory making use of a stationarity principle (substantially equivalent to the virtual work

principle); see also Germain (1973) for a systematic use of the virtual work principle to the same purpose.

In the following, a gradient elasticity theory like the above, being a special polar-type continuum theory,
will be referred to as (Toupin–Mindlin) polar-gradient elasticity theory. This label aims at distinguishing a

polar-gradient theory from other types of polar theories, e.g. the polar-functional theory of Green and

Rivlin (1965). It also introduces a net distinction between a polar-gradient theory (of local nature, with

gradient characteristics injected at the structural level through the strain–displacement relations) and a true

gradient theory as meant in the modern literature (the gradient characteristics are incorporated in the

constitutive equations). The latter theory will be referred to simply as gradient elasticity theory in the

following.

In a gradient elasticity theory, the material strain states can still be considered described by the same set
of nþ 1 strain tensors eðmÞ of a polar-gradient theory; but––at difference with the latter theory––the n higher

order strain tensors are treated, at the constitutive level, as dependent on the strain tensor eð0Þ ¼ e through

the differential relations (2), or (1). This amounts at introducing, into the material constitutive behavior, an

internal constraint by which only displacement-driven strain modes are allowed, that is, generated by any

Cnþ1-continuous displacement field, u, specified throughout the (Euclidean) domain occupied by the ma-

terial particle system.

The latter kinematic restriction on the material model has a number of consequences which make the

gradient model substantially different from the polar-gradient one and deserve being mentioned in details
since the beginning. The following can be stated:

ii(i) At difference with the polar-gradient theory––where the material stress states are described by nþ 1

stress tensors rðmÞ (m ¼ 0; 1; . . . ; n), respectively work-conjugate of as many (independent) strain tensors
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eðmÞ––in the gradient theory there is a (symmetric, Cauchy) total stress tensor, r, which is expressed in

terms of the nþ 1 stress tensors rðmÞ of the polar-gradient model through a differential relation, and

which is work-conjugate of the independent strain tensor eð0Þ ¼ e.

i(ii) At difference with the polar-gradient theory––where the stress–strain laws relate algebraically each of
the nþ 1 stress tensors rðmÞ with the nþ 1 associated strain tensors eðmÞ––in the gradient theory the total

stress tensor r is related to the independent strain tensor e through a tensor-valued PDE, say r ¼ LðeÞ,
of order 2n.

(iii) At difference with the polar-gradient theory––in which the (algebraic) stress–strain relations are of

local type––in the gradient theory the stress–strain relations are nonlocal in nature, since in fact the

differential equation r ¼ LðeÞ cannot be integrated uniquely in the relevant domain (evaluation of

a displacement-driven strain field, e, corresponding to a given r field) without taking into account

the appropriate boundary conditions. These boundary conditions are nonstandard in character, mean-
ing that their role is not that of conveying boundary data into the relevant boundary-value problem,

but rather that of suitably completing the differential description of the material constitutive law.

Therefore, these nonstandard boundary conditions do not exhibit the form of an alternative (typical

of the standard ones), but are cast in a suitably fixed format to enforce some constitutive requirements.

(iv) At difference with the polar-gradient theory––in which (like in any local continuum theory) the strain

energy stored in a material element, or particle, is induced by the strain occurred in the same particle––

in the gradient theory such strain energy is related to the overall strain field. This fact, consequence of

the nonlocal nature of the material constitution, implies that some long distance energy interchanges of
diffusive nature occur in the domain and, consequently, that the classical thermodynamics principle

of the local action is not valid. In other words, the material particles influence one another not by con-

tact forces and heat diffusion only (as it would be the case if the mentioned principle was valid), but

also by long distance energy interchanges.

i(v) At difference with the polar-gradient theory––in which (like in any local continuum theory) the first

thermodynamics principle holds in its classical pointwise form––in the gradient theory the mentioned

principle can be enforced only in global form for the whole domain; but, if enforced in pointwise form

for every material element, the aforementioned long distance energy interchanges must be taken in due
account, in general through a suitable nonlocality (energy) residual, Edelen and Laws (1971).

Gradient material models emerged in the literature, together with nonlocal integral ones, in the purpose

to account for long distance cohesive forces in real structured materials, see e.g. Kr€ooner (1967), Krumhansl

(1968), Eringen (1972, 1976, 1987), Rogula (1982), Aifantis (1984a,b, 1999), Triantafyllidis and Aifantis

(1986), Altan and Aifantis (1997). Both types of models have recently become popular for their ability

in providing remedies to some shortcomings that show up with the classical continuum theories, as for

instance the crack-tip stress singularity predicted by classical elasticity, Eringen (1987), and the strain
localization predicted by classical plasticity theory in the presence of softening, or damage, Pijaudie-Cabot

and Bazant (1987), Aifantis (1984b), Lasry and Belytscko (1988), M€uuhlhaus and Aifantis (1991), de Borst

et al. (1993, 1995). For a review of recent developments in gradient theories see Aifantis (2003) and the

references therein.

The concept of nonlocality residual was introduced in the framework of general nonlocal continuum

theories, Edelen and Laws (1971), Eringen and Edelen (1972), Eringen (1972), in which a term as nonlo-

cality residual was considered for every balance equation, what made rather cumbersome the resulting

theories. Nowadays there is some agreement in considering (like in the present study) just a single non-
locality residual in the internal energy balance equation for every nonlocality source (for instance, elasticity,

plasticity and damage). A single nonlocality residual in the form R ¼ r � w was introduced by Dunn and

Serrin (1985), who named the vector w ‘‘interstitial work flux’’, and by Maugin (1990), who named w ‘‘extra

entropy flux’’, but none of the latter authors took into account the body�s constitutive insulation condition
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(see Section 2). A single nonlocality residual was employed also by Polizzotto (2001) within nonlocal

elasticity, by Polizzotto and Borino (1998) within gradient plasticity, by Borino et al. (1999) within nonlocal

plasticity, and by Liebe et al. (2001), Benvenuti et al. (2002), Borino et al. (1999) within nonlocal damage

mechanics.
An important research issue of continuum mechanics is the correct way to write the nonstandard

boundary conditions for a gradient material model. These boundary conditions have not been well assessed

in the literature so far. In earlier attempts, they were either written intuitively in an analogy with the

standard ones, de Borst and M€uuhlhaus (1992), Altan and Aifantis (1997), Gurtin (2003), or derived from a

variational principle related to a particular boundary-value problem to solve, M€uuhlhaus and Aifantis

(1991), Vardulakis and Aifantis (1991), Comi and Perego (1995), Metrikine and Askes (2002). Only recently

have these nonstandard boundary conditions been recognized to possess an essentially constitutive nature

and hence to constitute a necessary complement of the constitutive equations formulation problem, to be
addressed within an appropriate thermodynamics framework, Polizzotto et al. (1998), Polizzotto and

Borino (1998), Liebe et al. (2001).

The present paper is devoted to gradient elasticity and has as main purpose the assessment of the

thermodynamic restrictions upon the related constitutive equations with particular attention to the asso-

ciated (nonstandard) boundary conditions. The same topic for a gradient plasticity model will be treated in

a separate paper to follow.

The plan of the paper is as follows. In Section 2, a suitable thermodynamic framework able to account

for nonlocality is presented. The classical Clausius–Duhem inequality is modified by the addition of the
nonlocality residual and then, in Section 3, used to find the thermodynamic restrictions upon the con-

stitutive equations: it is so found that these equations include, besides the field (differential) stress–strain

laws, also a set of (nonstandard) boundary conditions. Also, consistently with these thermodynamic re-

quirements, a surface layer with membrane stresses is envisioned to exist in the strained body. In Section 4,

the constitutive expression of the nonlocality residual is determined; moreover, it is proved that, for a

gradient material model, the nonlocality residual cannot be identically vanishing. In Section 5, the total

strain energy of a strained body is determined and found to include bulk and surface energies. A minimum

total potential energy principle for the structural boundary-value problem in gradient elasticity is also
formulated. In Section 6, the polar-gradient material model is addressed, comparisons with the gradient

model are made and results of Mindlin (1965) are recovered, pointing out the differences between the two

models, particularly in the constitutive equations and in the boundary conditions that accompany the

displacement equilibrium equations. A particular second gradient material model is presented in Section 7.

A few applications to a simple bar in tension are reported in Section 8. Section 9 is devoted to the con-

clusions. The paper includes two appendices: Appendix A for the notation, and Appendix B where an

identity (surface integral transformation formula) of frequent application in the text is provided.
2. Problem position and thermodynamic framework

Let a set of material particles regarded as a continuum occupy a (finite) domain V of the three-

dimensional Euclidean space and let this domain, in its undeformed configuration, be referred to a Car-

tesian orthogonal co-ordinate system, say x ¼ ðx1; x2; x3Þ. In the case of local material behavior, it would be

sufficient considering a single typical material element, or particle, in order to establish the relevant stress–

strain relations, whereas in the present case of nonlocal material behavior, in which the particles influence
one another, the entire particle system must be considered.

Let the material be thermo-elastic with a stress–strain law of the type
r ¼ Fðe;re; . . . ;rme; T Þ in V ; ð3Þ
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where r is a (symmetric, Cauchy) total stress tensor, e the (small) strain tensor and T the absolute tem-

perature. In the common terminology, Eq. (3) defines a gradient material model of grade m. Eq. (3) should
be completed by a sufficient number of boundary conditions over oV in order to guarantee a one-to-one

correspondence between the stress and strain fields. The thermodynamic consistency of Eq. (3) and the
precise form taken on by the associated boundary conditions must be assessed via a thermodynamic ap-

proach similar to that in use in classical constitutive equations theory, except that the material nonlocality

features must be accounted for in the present case. This is the object of this section.

Because of the long distance energy interchanges between the material particles with one another in any

deformation process, but not between the material particles and the exterior world, the first thermody-

namics principle can be written in its classical form only for the entire body, Germain et al. (1983), Lemaitre

and Chaboche (1990), that is:
Z
V

_UU dV ¼
Z
V
ðr : _eeþ h�r � qÞdV ; ð4Þ
where U ¼ Uðeð0Þ; eð1Þ; eð2Þ; gÞ is the internal energy density, function of the strain tensors eðmÞ; ðm ¼ 0; 1; 2Þ,
and of the entropy g, the strain tensors being specified as in Eq. (2) for n ¼ 2 (for simplicity, a second strain

gradient model is being considered), that is
eð0Þ ¼ e; eð1Þ ¼ re; eð2Þ ¼ r2e: ð5Þ
Also, h is the heat source, q is the heat conduction vector.

The first principle of classical thermodynamics is usually stated as in Eq. (4), but enforced for any

subdomain (even infinitesimal) V 0 � V , which makes it possible to derive from it such statements as those

related to the mass conservation, momentum and moment of momentum, see e.g. Green and Rivlin (1964).

In the presence of nonlocality, Eq. (4) holds only for V 0 ¼ V , hence the first principle cannot be employed

for deriving the statements mentioned above (these can, however, be obtained by the virtual work principle,

Germain (1973)), but it can still be used to derive the thermodynamic restrictions upon the constitutive

equations. This task is achieved hereafter.
As in Edelen and Laws (1971), Polizzotto (2001), Polizzotto and Borino (1998), the balance equation (4)

can equivalently be written in a pointwise form as
_UU ¼ r : _eeþ h�r � qþ R; ð6Þ

where the additional thermodynamic (scalar) variable, R, is the so-called nonlocality (energy) residual. R
represents the power density transmitted to the generic particle at x 2 V by all other particles in V as a

consequence of the nonlocality effects diffusion processes promoted by elastic deformations.

Since the latter processes exhaust within V , the following insulation condition must be satisfied:
Z
V
RdV ¼ 0: ð7Þ
In classical thermodynamics of (local) deformable materials, the second principle introduces the internal

entropy production, gint, and ultimately states that the inequality
_ggint :¼ _gg� h
T

�
�rT � q

T

� ��
P 0 8x 2 V ð8Þ
holds for any possible deformation process of the material, and qualifies as reversible the deformation

processes for which Eq. (8) is satisfied as an equality. It is a point of the present thermodynamic framework

that inequality (8) holds true also in the case of nonlocal, or gradient, material models. In other words, the
second thermodynamics principle holds in its local pointwise form for both local and nonlocal, or gradient,

materials.
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A simple reasoning to support the latter statement is as follows. Assume that, for a nonlocal, or gradient,

material, the second principle is valid in a global form, that is
Z
V
_ggint dV P 0 ð9Þ
for any possible deformation process. Then, there certainly would exist some deformation processes for

which inequality (9) is satisfied as an equality and such processes should be qualified as reversible at the

global level, not at the local one. Since this is physically meaningless, the assumption is to be rejected. In-

deed, reversibility and irreversibility are essentially local material properties. This statement was previously

anticipated by Polizzotto (2001) and Polizzotto and Borino (1998), but is here reproposed for completeness.

In the following, the second principle is thus enforced in the form of Eq. (8) even in the presence of

nonlocality, what is in contrast with other authors, e.g. Edelen and Laws (1971).

Introducing the Helmholtz free energy w ¼ wðeð0Þ; eð1Þ; eð2Þ; T Þ by means of the Legendre transformation

w ¼ U � Tg, Eq. (6) can be rewritten in the following equivalent form:
T _ggint ¼ r : _ee� _ww� g _TT �rT � q

T

� �
þ RP 0 in V ; ð10Þ
where the inequality sign on the right side is due to Eq. (8). Eq. (10) is the Clausius–Duhem inequality for a

nonlocal, or gradient, material; it differs from its classical form only in the presence of the nonlocality

residual R. Inequality (10) will be used (in next section) for deriving the desired thermodynamic restrictions

upon the constitutive laws of the considered gradient model. Before doing this, it is worth making a few

considerations to better clarify the role and the meaning of the nonlocality residual R.
For simplicity of reasoning, isothermal deformation processes are here considered. Then, integration of

(10) over V and taking into account Eq. (7) yields
Z
V
r : _eedV ¼

Z
V

_wwjT¼const dV þ T
Z
V
_ggint dV : ð11Þ
This expresses a classical energy balance relation, that is, the total mechanical work imparted to the system

is in part stored as potential energy in the system�s microstructure (first integral on the right side), in the

remaining part is dissipated as heat (second integral on the right-hand side). But this energy balance is valid

only for the whole body, not locally at the generic point where the energy balance relation, by (10), can be

written as
r : _eeþ R ¼ _wwjT¼const þ T _ggint: ð12Þ
One can state––at parity of the _ee field, hence of _ww––that, as a consequence of the energy flow due to

nonlocality, the total mechanical work (left-hand side of (11)) redistributes in V with reductions in the zones

where R > 0 and increasing in those where R < 0, and that thus the nonlocality energy flow proceeds from
the latter zones (R < 0) to the former ones (R > 0). It is thus evident the central role played by R in the

energy redistribution processes: namely, at the generic point of V , the mechanical power r : _ee, augmented

by the energy flowing from all other points of the body in the amount R (either positive or negative), splits

locally according to the reminded classical rule for the whole body.
3. The gradient elastic model

This section is devoted to the derivation of the thermodynamic restrictions upon the constitutive
equations of the gradient material model introduced in Section 2, including the obtainment of the asso-

ciated boundary conditions. Since a second strain gradient material model is being considered, the
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Helmholtz free energy has the form w ¼ wðeð0Þ; eð1Þ; eð2Þ; T Þ where, like in (5), eð0Þ ¼ feijg is the usual

(symmetric, second-order) strain tensor (six independent components), eð1Þ ¼ fopeijg is a third-order strain

tensor, symmetric in the last two index positions (18 independent components) and eð2Þ ¼ fopoqeijg is

a fourth-order strain tensor, symmetric in the first two and in the last two index positions (30 indepen-
dent components). The well-known procedure of Colemann and Gurtin (1967) is used hereafter, see also

Germain et al. (1983), Lemaitre and Chaboche (1990).

Integration of (10) over V , expanding the time derivative of wð�Þ, and taking into account (5) with _ee 2 C4

gives:
Z
V
T _ggint dV ¼

Z
V

r : _ee

�
� rð0Þ : _ee� rð1Þ..

.
r_ee� rð2Þ<r2 _ee

�
dV

�
Z
V

ow
oT

��
þ g

�
_TT þrT � q

T

� ��
dV P 0; ð13Þ
where the following positions hold:
rð0Þ :¼ ow
oeð0Þ

; rð1Þ :¼ ow
oeð1Þ

; rð2Þ :¼ ow
oeð2Þ

: ð14Þ
The latter equations define the tensor-valued (partial) thermodynamic forces associated, respectively, with

eð0Þ, eð1Þ, eð2Þ considered independent of one another. rð0Þ ¼ frð0Þ
ij g is a Cauchy-like stress tensor, whereas

rð1Þ ¼ frð1Þ
pijg and rð2Þ ¼ frð2Þ

pqijg are higher order stress tensors (of third- and fourth-order, respectively),

sometimes named ‘‘double’’ and ‘‘triple’’ stresses (Mindlin, 1964, 1965). The above stress tensors, which

exhibit the same symmetries as the corresponding strain tensors, will be referred to as microstress tensors in

the following.
Applying the divergence theorem where appropriate, one can write
Z

V
rð1Þ..

.
r_eedV ¼ �

Z
V
r � rð1Þ : _eedV þ

Z
S
n � rð1Þ : _eedS; ð15Þ

Z
V
rð2Þ<r2 _eedV ¼

Z
V
r2 : rð2Þ : _eedV �

Z
S
nr : rð2Þ : _eedS þ

Z
S
n � rð2Þ..

.
r_eedS: ð16Þ
Using the surface integral transformation formula (B.10) (with n � rð2Þ and _ee in place of A and B), the

second surface integral of (16) can be transformed as follows:
Z
S
n � rð2Þ..

.
r_eedS ¼

Z
V
G � ðn � rð2ÞÞ : _eedS þ

Z
S
nn : rð2Þ : on _eedS: ð17Þ
Therefore, substituting (17) into (16), then (15) and (16) into (13), the latter equation becomes
Z
V
T _ggint dV ¼

Z
V
½r� r̂r� : _eedV �

Z
V

ow
oT

��
þ g

�
_TT þrT � q

T

� ��
dV �

Z
S

Pð1Þ : _ee
h

þ Pð2Þ : on _ee
i
dSP 0;

ð18Þ

where r̂r denotes the total thermodynamic force associated to the independent strain _ee, defined as
r̂r :¼ rð0Þ � r � rð1Þ þ r2 : rð2Þ in V ð19Þ

and Pð1Þ and Pð2Þ are symmetric second-order tensors given by
Pð1Þ :¼ n � ðrð1Þ � r � rð2ÞÞ þG � ðn � rð2ÞÞ; ð20aÞ

Pð2Þ :¼ nn : rð2Þ: ð20bÞ
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Inequality (18), consequence of the Clausius–Duhem inequality (10), is not in a form suitable for de-

riving the desired thermodynamic restrictions on the constitutive equations. This is due to the internal

kinematic constraint demanding displacement-driven strain fields in order to guarantee their integrability

within the domain V . In other words, for a gradient elastic material model, the field _ee is to be treated as
being driven by the displacement field _uu 2 C5 through the field compatibility relation, _ee ¼ rs _uu. Therefore,
using the latter relation, (18) can be rewritten as
Z

V
T _ggintdV ¼

Z
V
½r� r̂r� : r _uudV �

Z
V
½ ow

oT

�
þ g

�
_TT þrT � q

T

� �
�dV

�
Z
S
½Pð1Þ : r _uuþ Pð2Þ : onr _uu�dSP 0; ð21Þ
where rs _uu has been replaced by r _uu due to the stated symmetries of the stress tensors.

Applying formula (B.10) one can write
Z
S
Pð1Þ : r _uudS ¼

Z
S
G � Pð1Þ � _uudS þ

Z
S
n � Pð1Þ � on _uudS: ð22Þ
Furthermore, note that (Mindlin, 1965)
onðr _uuÞ ¼ rðon _uuÞ � rðn � rÞ _uu ¼ rðon _uuÞ � ðrnÞT � r _uu ¼ rðon _uuÞ � ð �rrnÞT � r _uu; ð23Þ
where
rn ¼ �rrn ¼ f �rrpnqg ¼ 1

ra
kapkaq

� �
ð24Þ
and the kap (a ¼ 1; 2) denote the direction cosines of the curvature lines over the (regular) surface S. Thus,
making use of (23) and again applying formula (B.10) (with the appropriate changes), one has:
Z

S
Pð2Þ : onðr _uuÞdS

¼
Z
S
G �Pð2Þ �on _uudSþ

Z
S
n �Pð2Þ �o2n _uudS�

Z
S
G � ð �rrnÞT �Pð2Þ

h i
� _uudS�

Z
S
n � ð �rrnÞT �Pð2Þ

h i
�on _uudS:

ð25Þ
Therefore, noting that n � ð �rrnÞ ¼ 0, (hence the last integral of (25) is vanishing), substituting (22) and

(25) into (21) and applying the divergence theorem to the volume integral of (21), inequality (21) takes on

the form:
Z
V
T _ggint dV ¼ �

Z
V
r � ðr� r̂rÞ � _uudV �

Z
V

ow
oT

��
þ g

�
_TT þrT � q

T

� ��
dV

þ
Z
S

n � ðr
h

� r̂rÞ �G � Pð1Þ
�

� ð �rrnÞ � Pð2Þ
�i

� _uudS �
Z
S
½n � Pð1Þ þG � Pð2Þ� � on _uudS

�
Z
S
½n � Pð2Þ� � o2n _uudSP 0: ð26Þ
This inequality is suitable for deriving the desired thermodynamic restrictions, since _uu, together with its

normal derivatives on _uu and o2n _uu, are free variables in V [ S and S, respectively. For this purpose, let the class
of isothermal elastic deformation processes be considered first, such that _TT ¼ 0, rT ¼ 0 in any such
process. Hence inequality (26) simplifies as follows:
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Z
V
T _ggint dV ¼ �

Z
V
r � ðr� r̂rÞ: _uudV þ

Z
S

n � ðr
h

� r̂rÞ �G � ðPð1Þ � ð �rrnÞ � Pð2ÞÞ
i
� _uudS

�
Z
S
½n � Pð1Þ þG � Pð2Þ� � on _uudS �

Z
S
½n � Pð2Þ� � o2n _uudSP 0: ð27Þ
Considered that inequality (27) must hold true for any displacement-driven isothermal deformation

mechanism, it follows as necessary and sufficient conditions, that:
r � ðr� r̂rÞ ¼ 0 in V ; n � ðr� r̂rÞ � Tð0Þ ¼ 0 on S; ð28Þ

Tð1Þ :¼ n � Pð1Þ þG � Pð2Þ ¼ 0 on S; ð29aÞ

Tð2Þ :¼ n � Pð2Þ ¼ 0 on S; ð29bÞ
where Tð0Þ is defined as
Tð0Þ :¼ G � ðPð1Þ � ð �rrnÞ � Pð2ÞÞ: ð30Þ
Eqs. (28) and (29a,b) are the thermodynamic restrictions upon the stress–strain relations for isothermal
deformation mechanisms that are driven by the displacement field, as it is required within gradient elas-

ticity. Note that the Cauchy stress r is not uniquely determined by (28), since it in fact can be expressed as
r ¼ r̂rþ q in V ; ð31Þ
where q is an arbitrary stress satisfying
r � q ¼ 0 in V n � q ¼ Tð0Þ on S: ð32Þ
In other words, the Cauchy stress r is allowed to differ from the total thermodymamic force r̂r by an ar-

bitrary additive stress q, but self-equilibrated in V and in equilibrium with the traction Tð0Þ over the

boundary surface S.
However, considered that such a stress redundancy is unmotivated in the present context of (stable)

elasticity, q can be chosen identically vanishing in V , but different from zero in S, such as to satisfy (32)2.

Physically, this choice amounts to conjecturing that the traction Tð0Þ acting on S is totally resisted by some

membrane stresses arising in the boundary surface (surface layer) of the strained body. The membrane

shape being known, these membrane stresses can be uniquely determined in terms of Tð0Þ.

Further research efforts would be necessary in order to give a more satisfactory validation to the above

conjecture, but this point is not further elaborated here. For the purposes of the present paper, it is suf-

ficient to observe that this conjecture is thermodynamically consistent and coherent with the elastic nature

of the material endowed with microstructure. Accordingly, one has to set r ¼ r̂r in Eq. (28) and to treat Tð0Þ

as it was identically vanishing in any question concerned with equilibrium. With this proviso, Eqs. (28) and

(29a,b), remembering (20a,b) and after a few obvious transformations, can be rewritten as follows:
r ¼ r̂r :¼ rð0Þ � r � rð1Þ þ r2 : rð2Þ in V ; ð33Þ

Tð1Þ :¼ n � Pð1Þ � �rr � Pð2Þ ¼ 0 on S; ð34aÞ

Tð2Þ :¼ n � Pð2Þ ¼ 0 on S: ð34bÞ
The latter equations are the inherent state equations which, at difference with classical continuum the-

ories, include both field and boundary equations. The former, through (14), provides the stress–strain laws
for the considered (hyperelastic) gradient model, a set of (generally nonlinear) six PDEs of the fourth-order.

Eqs. (34a,b) provide the associated nonstandard boundary conditions, which impose that the nonlocality



7408 C. Polizzotto / International Journal of Solids and Structures 40 (2003) 7399–7423
diffusion vectors Tð1Þ½e� and Tð2Þ½e� vanish identically on the boundary surface S. (Note: Tð1Þ has the

dimension of a force per unit length, Tð2Þ of a force.)

The vectors TðmÞ½e� (m ¼ 0; 1; 2), describe the long distance energy flux through S towards the exterior

world, but no such energy is allowed to traverse S because of the nonstandard boundary conditions (34a,b),
as well as because Tð0Þ is absorbed by the surface layer as membrane stresses.

As a consequence of (33) and (34a,b), inequality (27) is satisfied as an equality, hence _ggint ¼ 0 identically,

which implies that the considered class of isothermal deformation processes are reversible.

The restrictions enforced by (34a,b), as long with the surface layer resisting the traction Tð0Þ, are a

consequence of the kinematic internal constraint imposed by the gradient model to the (local) polar-

gradient one. They guarantee that, whatever the deformation process––hence independently of the par-

ticular boundary-value problem to which the deformation process may be related––the nonlocality effects

do not propagate beyond the body�s boundary surface (constitutive insulation).
Coming back to general thermo-elastic deformation processes, the assumption is made that Eqs. (33)

and (34a,b) remain valid together with the surface layer and membrane stresses therein. This assumption

implies that (26) simplifies as follows:
Z
V
T _ggint dV ¼ �

Z
V

ow
oT

�
þ g

�
_TT dV �

Z
V
rT � q

T

� �
:dV P 0: ð35Þ
This inequality holds for any thermo-elastic deformation process and for any possible heat diffusion law,

hence for arbitrary _TT fields in V . It can thus be satisfied if, and only if
g ¼ � ow
oT

in V ; ð36Þ

UT :¼ �rT � q

T

� �
P 0 in V : ð37Þ
Eq. (36) is a further state equation specifying the constitutive relation for the entropy g, whereas (37)

provides the nonnegative dissipation power by thermal diffusion, UT.
4. Evaluation of the nonlocality residual

Since heat conduction is, by assumption, a local-type phenomenon, the evaluation of R can be achieved

by considering isothermal deformation processes. For this purpose, let one note that, in virtue of (33) and

(34a,b) and of Tð0Þ being resisted by the membrane stresses in the surface layer, Eq. (27) is satisfied as an

equality, hence (as already noted) _ggint ¼ 0 everywhere in V . From (10), which is also an equality, the

nonlocality residual R is determined as
R ¼ _wwjT¼const � r : _ee in V : ð38Þ
This, expanding the time derivative of wð�Þ at constant T and using (14) and (33), gives
R ¼ r � rð1Þ : _eeþ rð1Þ..
.
r_ee�r2 : rð2Þ : _eeþ rð2Þ<r2 _ee ¼ r � ½ðrð1Þ � r � rð2ÞÞ : _eeþ rð2Þ..

.
r_ee� in V ; ð39Þ
which can be regarded as the constitutive expression of R for the considered gradient model.

The reasoning developed in Section 3 to derive (33) and (34a,b) has its central part from Eqs. (13)–(19),

(20a), (20b), (21)–(27), where only integral forms of the Clausius–Duhem inequality have been used, hence

without the explicit involvement of the residual R. This fact may induce one to conjecture that the non-

locality residual R might be a useless and superfluous ingredient of the theory. But this is not the case, as
proved hereafter.
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Let V0 be a (regular) subdomain, V0 � V . The total nonlocality residual in V0 can be computed by in-

tegration of (39) over V0 and then applying the divergence theorem, so obtaining
Z
V0

RdV0 ¼
Z
S0

n � ðrð1Þ � r � rð2ÞÞ : _eedS0 þ
Z
S0

n � rð2Þ..
.
r_eedS0; ð40Þ
where n is the unit external normal to S0 ¼ oV0. The last surface integral of (40) can be transformed by

formula (B.10) (with n � rð2Þ and _ee in place of A and B), provided all the surface operators there appearing be

computed over S0. Using the positions in (20a,b) and posing _ee ¼ rs _uu, Eq. (40) is found to take the form
Z
V0

RdV0 ¼
Z
S0

½Pð1Þ : r _uuþ Pð2Þ : ron _uuÞ�dS0: ð41Þ
Thus, by Eqs. (22) and (25) written for S ¼ S0, using the positions (29a,b) and (30), gives the notable

formula
Z
V0

RdV0 ¼
Z
S0

½Tð0Þ � _uuþ Tð1Þ � on _uuþ Tð2Þ � o2n _uu�dS0; ð42Þ
which expresses the total nonlocality residual over the subdomain V0 in terms of the related nonlocality

diffusion vectors Tð1Þ and Tð2Þ, and the traction Tð0Þ as well, all computed over S0 ¼ oV0.
Indeed, if R was vanishing identically everywhere in V , Eq. (42) would require that
Z

S0

½Tð0Þ � _uuþ Tð1Þ � on _uuþ Tð2Þ � o2n _uu�dS0 ¼ 0 ð43Þ
for arbitrary choices of V0 � V and of the deformation mechanism. This condition can be satisfied if, and

only if, Tð0Þ ¼ Tð1Þ ¼ Tð2Þ ¼ 0, hence rð1Þ ¼ 0 and rð2Þ ¼ 0, everywhere in V , which implies that the potential

wð�Þ does not depend on the strain gradients re and r2e (simple material). Since this is obviously absurd,

one can conclude that the nonlocality residual R cannot be identically vanishing for a gradient material. The

proof is so acquainted. Gurtin (1965), using different arguments, proved that a strain gradient dependent

free energy wð�Þ cannot represent a simple material.
5. Minimum total potential energy principle for gradient elasticity

In the previous sections, a particular gradient thermo-elastic material model has been envisioned. In

isothermal conditions––these conditions are assumed throughout in the following––a body of such material

obeys the stress–strain laws (14) and (33) with the associated nonstandard boundary conditions (34a,b), and

is endowed with a surface layer with membrane stresses equivalent to the traction Tð0Þ, Eq. (30), such that

the latter can be treated as identically vanishing in any question regarding equilibrium of the particle

system.

In this section, the total strain energy of the body will be assessed first, then a minimum total potential

energy principle will be presented.

5.1. Total strain energy

For the gradient particle system, or body, described above, endowed with Helmholtz free energy

wðe;re;r2eÞ and being in a generic strain state e, let _eeðx; t0Þ ¼ rs _uuðx; t0Þ be the strain rate in any strain path
from the initial strain-free state at t ¼ 0 to the final strain state eðx; tÞ ¼ rsuðx; tÞ. The following can be

written:
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Z
V
wð�ÞdV ¼

Z t

0

Z
V
ðrð0Þ : _eeþ rð1Þ..

.
r_eeþ rð2Þ<r2 _eeÞdV dt0

¼
Z
V

Z e

0

r : dedV þ
Z t

0

Z
S
ðPð1Þ : _eeþ Pð2Þ : on _eeÞdS dt0

¼
Z
V

Z e

0

r : dedV þ
Z
S

Z u

0

Tð0Þ � dudS þ
Z t

0

Z
S
ðTð1Þ � on _uuþ Tð2Þ � o2n _uuÞdS dt0; ð44Þ
where r is the total stress, Eq. (33).

The integrals
W ðeÞ :¼
Z e

0

r : de; ð45aÞ

w�ðuÞ :¼
Z u

0

Tð0Þ � du; ð45bÞ
represent, respectively, the bulk strain energy density in V and the surface strain energy density in S, which
obviously satisfy the following relations:
oW
oe

¼ r
ow�

ou
¼ Tð0Þ: ð46Þ
An initial surface energy value, w�
0 ¼ w�ðu ¼ 0Þ, may be introduced in (45b) in order to incorporate the

surface tension envisioned by Mindlin (1965) in a polar-gradient body, but this point is skipped for sim-

plicity.

Since Tð1Þ ¼ Tð2Þ ¼ 0 on S by Eqs. (34a,b), Eq. (44) can be rewritten as follows:
Z
V
wðe;re;r2eÞdV ¼

Z
V
W ðeÞdV þ

Z
S
w�ðuÞdS: ð47Þ
Let one note that the integral on the left-hand side of (47) can be interpreted as the total strain energy in

the polar-gradient elastic body being in the strain state e, whereas the integrals on the right-hand side of (47)

are the bulk and surface total strain energies of the gradient elastic body being in the same strain state. This

means that the polar-gradient and gradient elastic bodies, having in common the same free energy potential

wð�Þ and being in a same strain state, possess equal total strain energies, but differently distributed in the

respective domains: namely, passing from the polar-gradient body to the gradient one, the total strain

energy redistributes, part as bulk strain energy in V , the other part as surface strain energy in the surface
layer over S.

5.2. Minimum principle

Let a gradient elastic material as that described previously occupy the domain V of a body subjected to

volume forces �bb in V , tractions �tt on ST and imposed displacements �uu on Su, where ST and Su are disjoint

complementary portions of the boundary surface S. Imposed thermal-like strains are not considered. In the

hypothesis of small displacements and strains, the body�s static response to the loads can be found as
solution (if it exists) to a boundary-value problem governed by Eqs. (14), (33) and (34a,b)––enriched by the

boundary layer with membrane stresses as explained above––, besides the compatibility and equilibrium

equations, that is:
e ¼ rsu in V ; u ¼ �uu on Su; ð48aÞ
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r � rþ b ¼ 0 in V ; n � r ¼ �tt on ST: ð48bÞ
The solution to this boundary-value problem is characterized by a minimum principle, as explained

hereafter. Let the following functional Pg be considered, that is:
Pg½u� :¼
Z
V
W ðeÞdV �

Z
V

�bb � udV �
Z
ST

�tt � udS; ð49Þ
where W ðeÞ is the bulk strain energy density, by assumption positive definite, e is expressed in terms of u by

(48a)1 and u 2 C6 is the unknown displacement field. The surface strain energy w�ðuÞ does not appear in
(49) because Tð0Þ is conventionally to be treated as vanishing, as previously stated. However, w�ðuÞ can be

introduced in (49) by means of (47), so obtaining
Pg½u� ¼
Z
V
wðe;re;r2eÞdV �

Z
S
w�ðuÞdS �

Z
V

�bb � udV �
Z
ST

�tt � udS: ð50Þ
The following can be proven.

Minimum total potential energy principle for gradient elasticity. For a gradient elastic body with a convex

free energy potential, the (unique) solution (if exists) to the related boundary-value problem minimizes the

total potential energy Pg (50) of the body under the constraint u ¼ �uu on Su. Conversely, the displacement
field u making minimum Pg solves the boundary-value problem.

In order to prove the above statement, the first variation of Pg is considered, that is
dPg ¼
Z
V

rð0Þ : de

�
þ rð1Þ..

.
rdeþ rð2Þ<r2de

�
dV �

Z
S

ow�

ou
� dudS �

Z
V

�bb � dudV �
Z
ST

�tt � dudS; ð51Þ
where du 2 C6 is an arbitrary displacement variation, but du ¼ 0 on Su. Making use of (15)–(17), but with _ee
replaced by de, of the definition (19) with r in place of r̂r, and of (20a,b) as well, one obtains:
dPg ¼
Z
V
r : rdudV �

Z
V
b � d�uudV �

Z
ST

�tt � dudS �
Z
S

ow�

ou
� dudS

þ
Z
S
½Pð1Þ : rduþ Pð2Þ : onðrduÞ�dS: ð52Þ
Further, let Eqs. (22) and (25) (with _uu replaced by du), be used in order to transform the last surface integral

on the right side of (52); also, let the divergence theorem be applied to the first volume integral in (52).

Then, in view of (46)2, one obtains:
dPg ¼ �
Z
V
ðr � rþ �bbÞ � dudV þ

Z
ST

ðn � r��ttÞ � dudS þ
Z
S
½Tð1Þ � onduþ Tð2Þ � o2ndu�dS: ð53Þ
If u 2 C6 is the/a solution of the gradient elasticity problem, hence (14), (33), (34a,b), and (48a,b) are

satisfied, it is dPg½u� ¼ 0 identically and Pg½u� is stationary; conversely, if Pg½u� is stationary for some

u 2 C6, then (53) must vanish identically, hence u solves the boundary-value problem. The stationarity of

Pg½u� is thus a characterization of the/a solution (if exists).

On the other hand, denoting u0 ¼ uþ du a varied displacement field obtained from the solution u with
du 2 C6 arbitrary, but du ¼ 0 on Su, Pg can correspondingly be written as
Pg½u0� ¼ Pg½u� þ dPg þ
1
d2Pg þOðkduk3Þ: ð54Þ
2
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Because dPg ¼ 0 and moreover, for any nontrivial de in V ,
d2Pg ¼
Z
V
d2W ðeÞdV > 0 ð55Þ
due to the positive definiteness of W ðeÞ, it follows that
Pg½u0�PPg½u� ð56Þ
for any u0 belonging to a sufficiently small neighbour functional domain around u, the equality being valid
if, and only if, u0 � u (uniqueness of the solution, if any). The proof is so complete.
6. The polar-gradient model vs. the gradient model

In this section, the Toupin–Mindlin polar-gradient elasticity model, endowed with the same free energy

potential wð�Þ of the gradient one, is addressed for comparison purposes. A first basis of comparison is the
total strain energies of the polar-gradient and gradient bodies being in a same strain state. This comparison,

made in Section 5.1, leads to the conclusion that the two bodies possess the same amount of total strain

energy, but the latter is differently distributed in their respective domains, Eq. (47). Further comparisons

are elaborated hereafter.
6.1. Thermodynamic aspects

Let w ¼ wðeð0Þ; eð1Þ; eð2ÞÞ be the common free energy potential. The polar-gradient material is a local-type

model with strain and stress states locally described by eðmÞ (m ¼ 0; 1; 2), and rðmÞ (m ¼ 0; 1; 2), respectively.
The Clausius–Duhem inequality (10) holds with R ¼ 0 and has the form
rð0Þ : _eeð0Þ þ rð1Þ..
.
_eeð1Þ þ rð2Þ<_eeð2Þ � _wwP 0 ð57Þ
for every individual material particle in V . Expanding the time derivative of w, Eq. (57) becomes
rð0Þ
�

� ow
oeð0Þ

�
: _eeð0Þ þ rð1Þ

�
� ow
oeð1Þ

�
..
.
_eeð1Þ þ rð2Þ

�
� ow
oeð2Þ

�
<_eeð2Þ P 0: ð58Þ
This, since must be satisfied for any deformation mechanism, hence for arbitrary choices of _eeð0Þ, _eeð1Þ and _eeð2Þ,
implies the equalities
rð0Þ ¼ ow
oeð0Þ

; rð1Þ ¼ ow
oeð1Þ

; rð2Þ ¼ ow
oeð2Þ

: ð59Þ
These are the state equations of the considered material, formally similar to those in (14), where,

however, the stress tensors are given as mere definitions. Eq. (59) provides the stress–strain laws of the

(hyperelastic) polar-gradient material model.

If the material model is a gradient one, with eð0Þ ¼ e, eð1Þ ¼ re and eð2Þ ¼ r2e, the equalities in (59)

cannot any longer be inferred from (58) because the strain rate tensors are not independent of one another.

The assessment of the stress state as a function (or a functional) of the strain state cannot be achieved while

resting within the framework of a single material element, and anyway it cannot be inferred uniquely from
inequality (58) because there is an excess of stress variables. The correct thermodynamic treatment is then

that developed in Section 3.
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6.2. Boundary-value problem for the polar-gradient model

Let one consider the functional Pp½u� defined as follows:
Pp½u� :¼
Z
V
wðeð0Þ; eð1Þ; eð2ÞÞdV �

Z
V

�bb � udV �
Z
ST

�tt � u
h

þ�ttð1Þ � onuþ�ttð2Þ � o2nu
i
dS; ð60Þ
where �ttð1Þ and �ttð2Þ denote double and triple forces (or generalized tractions) assigned over ST (Mindlin, 1965)

and the strain tensors eðmÞ (m ¼ 0; 1; 2), are related to the (unknown) displacement, u, through the field

compatibility equations, that is
eð0Þ ¼ rsu; eð1Þ ¼ rrsu; eð2Þ ¼ r2rsu in V : ð61Þ
Pp½u� is the total potential energy of a polar-gradient body. The first variation ofPp, proceeding in a way
similar to that of Section 5.2, can be written as follows:
dPp ¼
Z
V

rð0Þ	
�r � rð1Þ þ r2 : rð2Þ
 : rdudV

þ
Z
S

Pð1Þ : rdu
�

þ Pð2Þ : onðrduÞ
�
dS �

Z
V

�bb � dudV

�
Z
ST

ð�tt � duþ�ttð1Þ � onduþ�ttð2Þ � o2nduÞdS; ð62Þ
where rsu has been replaced with ru for the assumed symmetries in the tensors rðmÞ (m ¼ 0; 1; 2), and Pð1Þ

and Pð2Þ are as in (20a,b). Eq. (62), by the divergence theorem, transforms into
dPp ¼ �
Z
V

r � ðrð0Þ
h

�r � rð1Þ þ r2 : rð2ÞÞ þ �bb
i
� dudV þ

Z
ST

½n � rð0Þ	
�r � rð1Þ þ r2 : rð2Þ
��tt� � dudS

�
Z
ST

ð�ttð1Þ � onduþ�ttð2Þ � o2nduÞdS þ
Z
S
½Pð1Þ : rduþ Pð2Þ : onðrduÞ�dS: ð63Þ
Further, let Eqs. (22) and (26), with _uu replaced by du, be applied to transform the last surface integral of

(63). In this way, one obtains
dPp ¼ �
Z
V

r � ðrð0Þ
h

�r � rð1Þ þ r2 : rð2ÞÞ þ �bb
i
� dudV

þ
Z
ST

n � ðrð0Þ
h

�r � rð1Þ þ r2 : rð2ÞÞ þ Tð0Þ ��tt
i
� dudS þ

Z
S
½Tð1Þ ��ttð1Þ� � ondudS

þ
Z
S
½Tð2Þ ��ttð2Þ� � o2ndudS: ð64Þ
Let one note that, since no surface layer with membrane stresses exists in the polar-gradient elastic body,

the traction Tð0Þ cannot be disregarded, nor the vectors Tð1Þ and Tð2Þ turn out to be required to vanish.

Eq. (64), considering the vectors TðmÞ (m ¼ 0; 1; 2), displacement dependent through the side equation

e ¼ rsu, represents the first variation of the total potential energy Pp of the polar-gradient body, for which

the displacement u is the driving independent variable field. As it is evident from (64), the Euler–Lagrange
equations related to the stationarity for Pp include, besides the compatibility equations, also the field

equilibrium equations, i.e.
r � ðrð0Þ � r � rð1Þ þ r2 : rð2ÞÞ þ �bb ¼ 0 in V ; ð65Þ
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as well as the related standard boundary conditions, that is

• Static boundary conditions on ST
n � ðrð0Þ � r � rð1Þ þ r2 : rð2ÞÞ þ Tð0Þ ¼ �tt; ð66aÞ

Tð1Þ ¼ �ttð1Þ; Tð2Þ ¼ �ttð2Þ: ð66bÞ

• Kinematic boundary conditions on Su
u ¼ �uu; onu ¼ �uuð1Þ; o2nu ¼ �uuð2Þ; ð66cÞ
where �ttðmÞ, �uuðmÞ (m ¼ 1; 2), denote generalized tractions and displacements specified over ST and Su. (Different
surface partitions, say SðmÞ [ SðmÞ ¼ S, for the boundary data can be adopted, but this point has not been

pursed for simplicity.) The boundary conditions in (66a–c) coincide with those given by Mindlin (1965).

The solution (if any) to the equation set (59), (61), (65) and (66a–c), which governs the polar-gradient

boundary-value problem, is characterized by the stationarity of Pp½u� of (60) under the conditions (61) and
(66c), as shown by Mindlin (1965), who also proved that the related solving displacement equation system

is the same whether the field compatibility equations are taken as in (61), or even in the form
eð0Þ ¼ rsu; eð1Þ ¼ r2u; eð2Þ ¼ r3u in V : ð67Þ

(In relation to the latter point, it is to be noted that the tensors rrsu and r2u possess the same number

(eighteen) of independent components and that the components of one tensor are linear combinations of

those of the other tensor; the same holds for the tensors r2rs and r3u, having thirty independent com-
ponents each, Mindlin (1965).)

In effects, the previously mentioned stationarity principle can be strengthened by stating the following:

Minimum total potential energy principle for polar-gradient elasticity. For a polar-gradient elastic body

with a convex free energy potential, the (unique) solution (if exists) to the related Mindlin-type boundary-

value problem minimizes the total potential energy Pp of the body under the constraints u ¼ �uuð0Þ, onu ¼ �uuð1Þ

and o2nu ¼ �uuð2Þ on Su. Conversely, the variables set that makes minimum the total potential energy Pp solves

the boundary-value problem.

The proof of the latter statement is easy. Denoting by u 2 C6 the displacement field pertaining to the
solution to the boundary-value problem, and by du 2 C6 a displacement variation field such that

du ¼ ondu ¼ o2ndu ¼ 0 on Su, one can write
Pp½u0� ¼ Pp½u� þ dPp þ
1

2
d2Pp þOðkduk3Þ; ð68Þ
where u0 ¼ uþ du. Since dPp ¼ 0 8du complying with the side conditions, and since by (60) and the con-

vexity of wð�Þ in the space of its tensor-valued arguments it is
d2Pp ¼
Z
V
d2wðeð0Þ; eð1Þ; eð2ÞÞdV > 0; ð69Þ
follows that
Pp½u0�PPp½u� ð70Þ

for any displacement field u0 belonging to a sufficiently small neighbour domain around u, with the equality

being valid if, and only if, u0 � u. The proof is so granted.

On comparing the above results with those obtained in Section 5.1, one realizes that the boundary

conditions in the two boundary-value problems are nine in number for both the gradient and the polar-
gradient material models, but whereas in the case of the polar-gradient material all the boundary conditions
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are standard in nature, in the case of the gradient material there are three standard boundary conditions and

six nonstandard ones.

Another aspect to point out regards the vectors TðmÞ (m ¼ 0; 1; 2), which intervene in the above two

boundary-value problems, in each with a completely different role. In the polar-gradient problem, these
vectors represent some special generalized tractions that arise from the micromorphic nature of the con-

tinuum, hence are in general nonvanishing and required to satisfy suitable (static) boundary conditions on

S, Eqs. (66a–c). In the gradient problem, the mentioned vectors possess a constitutive nature, Tð1Þ and Tð2Þ

are the nonlocality diffusion forces and as such are required to vanish identically over the boundary surface

(nonstandard boundary conditions), Tð0Þ promotes the membrane stresses in the surface layer.
7. Particular second gradient material model

As an example, let w be taken in the form:
w :¼ 1

2
D<eeþ 1

2
c1D<ðre � reÞ þ 1

2
c2D<ðr2e : r2eÞ; ð71Þ
where D ¼ fDijkhg denotes the usual fourth-order elastic moduli tensor (with its symmetries) and c1, c2 are
material constants (with dimensions of second and fourth power of a length, respectively). In indicial
notation, w is
w ¼ 1

2
Dijkhðeijekh þ c1eij;pekh;p þ c2eij;pqekh;pqÞ: ð72Þ
By (14), one has
rð0Þ
ij ¼ Dkhijekh; or rð0Þ ¼ D : e; ð73aÞ

rð1Þ
pij ¼ c1Dkhijekh;p; or rð1Þ ¼ c1rðD : eÞ; ð73bÞ

rð2Þ
pqij ¼ c2Dkhijekh;pq; or rð2Þ ¼ c2r2ðD : eÞ: ð73cÞ
Hence, by (33), the total stress is, denoting by jrj2 :¼ r � r the Laplace operator,
r ¼ D : 1
�

� c1jrj2 þ c2jrj4
�
e: ð74Þ
By (34a,b), the nonstandard boundary conditions, after a few mathematical transformations, prove to be:
Tð1Þ ¼ nn : rð1Þ � ðnn �rrÞT..
.
rð2Þ � ðn �rrÞT : ðn � rð2ÞÞ � �rr � ðnn : rð2ÞÞ ¼ 0; ð75aÞ

Tð2Þ ¼ nnn..
.
rð2Þ ¼ 0; ð75bÞ
where rð1Þ and rð2Þ are given by (73b,c).

The Aifantis (second grade) model is a special case of the above one, obtained on setting

c1 ¼ c 6¼ 0; c2 ¼ 0, by which (74) simplifies as
r ¼ D : ð1� cjrj2Þe ð76Þ

and the nonstandard boundary conditions (75a,b) reduce to
Tð1Þ ¼ nn : rð1Þ ¼ c1ontð0Þn ¼ 0; tð0Þn :¼ rð0Þ � n: ð77Þ
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8. Applications

A few simple applications to a one-dimensional bar model are reported in this section. The bar has

length L, is clamped at the end x ¼ 0 and subjected to an imposed displacement u ¼ �uu at the other end,
x ¼ L. The material is gradient elastic with a stress–strain law as in Eqs. (76) and (77) (Aifantis model),

which in the present one-dimensional case take on the form:
r ¼ Eðe� c2e00Þ 8x 2 ð0; LÞ ð78aÞ

e0 ¼ 0 at x ¼ 0 and x ¼ L; ð78bÞ
where E is the Young modulus, ð�Þ0 :¼ dð�Þ=dx and c2 is used in place of c to stress the positive definiteness

of the related free energy potential wð�Þ given by
wðe; e0Þ ¼ 1

2
E½e2 þ c2ðe0Þ2�: ð79Þ
Eqs. (78a,b) are the one-dimensional counterparts of (33) and (34a,b) for the case of a first strain gra-

dient model. The surface operator G of (B.9) being trivially vanishing in the present case, the polar traction

Tð0Þ of (30) is also vanishing, hence no boundary membrane stresses exist in the bar. (It is also to be noted

that the gradient elasticity problem to solve is equivalent to a particular polar-gradient elasticity problem

for the same bar with (standard) boundary conditions T ð1Þ ¼ 0 at both end sections (equivalent to (78b)),

besides the same kinematic boundary conditions.)

Two different situations are considered in the following, in one the bar is homogeneous, in the other it is

(macroscopically) nonhomogeneous (E piecewise constant).

8.1. Homogeneous bar

The displacement response of the bar to the imposed end displacement can be obtained as the solution to

the differential equation
ðu� c2u00Þ00 ¼ 0 in ð0; LÞ ð80Þ
with the standard boundary conditions
uð0Þ ¼ 0; uðLÞ ¼ �uu ð81Þ
as long with the nonstandard ones in Eq. (78b), equivalent to
u00ð0Þ ¼ u00ðLÞ ¼ 0: ð82Þ
The general solution of (80) is
uðxÞ ¼ A1xþ A2 þ B1 sinh
x
c
þ B2 cosh

x
c
; ð83Þ
where A1, A2, B1, B2 are constants to be determined by means of (81) and (82). By (82) one obtains
B2 ¼ 0; B1 sinh
L
c
¼ 0 ! B1 ¼ 0 ð84Þ
and by (81) one has
uðxÞ ¼ �uux=L; r ¼ E�uu=L: ð85Þ
It thus follows that the gradient solution coincides with the local-type solution. This is not surprising in

consideration of the fact that, in a homogeneous bar, the stress being uniform, also the strain must be
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uniform for a stable bar. As pointed out by Altan and Aifantis (1997), only the usage of extra boundary

conditions in the form (78b) leads to a uniform strain response of the bar. This means that, among different

forms of extra boundary conditions that may be used to solve the bar problem, only the conditions in (78b),

or (82), are consistent with the gradient model, hence they are to be considered as the very nonstandard
boundary conditions.

8.2. Nonhomogeneous bar

Let n be a new co-ordinate axis in the bar with origin in the bar middle section, such that x ¼ nþ L=2
(�L=26 n6 L=2), and let the Young modulus be E� ¼ E for n < 0 and Eþ ¼ lE for n > 0. The solution to

(80), written separately for the two half portions of the bar, has the form:
uþðnÞ ¼ Aþ
1 nþ Aþ

2 þ Bþ
1 sinh

n
c
þ Bþ

2 cosh
n
c

ðnP 0Þ; ð86aÞ

u�ðnÞ ¼ A�
1 nþ A�

2 þ B�
1 sinh

n
c
þ B�

2 cosh
n
c

ðn6 0Þ; ð86bÞ
where the A1, A2 and B1, B2 are constants to evaluate by means of the boundary conditions. The standard

boundary conditions are as follows:
½uð0Þ� ¼ ½u0ð0Þ� ¼ ½u00ð0Þ� ¼ 0; ð87Þ

½rð0Þ� ¼ 0; ð88Þ

uð�L=2Þ ¼ 0; uðL=2Þ ¼ �uu ð89Þ

(where ½ð�ÞðxÞ� denotes jump of (Æ) at x), the nonstandard ones being like (82). Conditions (87), which

enforce the displacement C2-continuity at n ¼ 0, imply that
Aþ
2 ¼ A�

2 :¼ A2; Bþ
2 ¼ B�

2 :¼ B2; ð90Þ

Aþ
1 � A�

1 þ ðBþ
1 � B�

1 Þ=c ¼ 0; ð91Þ

whereas by (88) one obtains
A�
1 ¼ lAþ

1 ; ð92Þ

then, by (82), u00ð�L=2Þ ¼ u00ðL=2Þ ¼ 0, and one has
Bþ
1 ¼ �B�

1 :¼ B1; B2 ¼ �B1 tanh
L
2c

: ð93Þ
Finally, the displacement response proves to be as follows:
uþðnÞ ¼ �uu
ð1þ lÞ 2

n
L

�
þ l� ð1� lÞ c

L
sinh

n
c

�
� tanh

L
2c

cosh
n
c

��
ðn > 0Þ; ð94aÞ

u�ðnÞ ¼ �uu
ð1þ lÞ 2l

n
L

�
þ lþ ð1� lÞ c

L
sinh

n
c

�
þ tanh

L
2c

cosh
n
c

��
ðn < 0Þ; ð94bÞ
whereas the stress response is
r ¼ 2E�uu
ð1þ lÞL : ð95Þ
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Fig. 1. Strain diagrams in a gradient bar with the Young modulus E in the left half, lE in the right half, subjected to an extension

�uu=L ¼ 0:1. The discontinuous curves relate to the case of local material.
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The strains eþ and e� as functions of x are given by
eþðxÞ ¼ �uu
ð1þ lÞL 2

�
� ð1� lÞ cosh

2x� L
2c

�
� tanh

L
2c

sinh
2x� L
2c

��
x

�
P

L
2

�
; ð96aÞ

e�ðxÞ ¼ �uu
ð1þ lÞL 2l

�
þ ð1� lÞ cosh

2x� L
2c

�
þ tanh

L
2c

sinh
2x� L
2c

��
x

�
6
L
2

�
ð96bÞ
and are plotted in Fig. 1.

For c ! 0 (local elasticity), the hyperbolic expressions in parentheses of (96a,b) being vanishing at the

limit, the strain field proves to be piecewise constant, that is
eþ ¼ 2�uu
ð1þ lÞL ; x

�
P

L
2

�
; e� ¼ 2l�uu

ð1þ lÞL ; x
�

6
L
2

�
ð97Þ
as shown in Fig. 1. Also, for l ¼ 1 the (local type) solution of Section 8.1 is recovered.
9. Conclusions

Gradient elasticity theory, meant as in the modern literature (that is, with the gradient characteristics

injected in the constitutive equations), has been discussed mainly from a thermodynamics point of view.

Through suitable thermodynamics arguments, the nonstandard boundary conditions for a second gradient

model have been provided. Also, in accord with the thermodynamics requirements, a surface layer with
membrane stresses has been envisioned in the strained gradient body.

The thermodynamic motivations and the physical meaning of the nonstandard boundary conditions, as

well as of the surface layer and membrane stresses therein, have been pointed out. Namely, they guarantee

that, in the gradient particle system, the nonlocality effects diffusion processes (causing some energy in-

terchanges within the body) do not exceed the boundary surface of the body, which thus proves to be

constitutively insulated.

The essential role played by the nonlocality (energy) residual has been assessed. It makes it possible for

the first thermodynamics principle (which for nonlocal continua holds only in global form) to be restated in
its classical pointwise form, provided the mentioned nonlocality residual is there involved as an additional

state variable. The constitutive expression of the nonlocality residual and the other constitutive equations



C. Polizzotto / International Journal of Solids and Structures 40 (2003) 7399–7423 7419
have been determined through the state equations. The nonlocality residual cannot be identically vanishing

for a gradient (or more in general nonlocal) material model, otherwise the material is a simple one.

The total strain energy of a gradient elastic body being in a generic strain state has been shown to include

a bulk energy distributed in the domain, and a surface energy distributed in the surface layer. The surface
energy may be defined such as to possess an initial value coincident with, or including as a particular case,

the surface tension studied by Mindlin (1965).

The structural boundary-value problem for a second gradient hyperelastic body has been addressed in

the hypothesis of infinitesimal displacements and a minimum total potential energy principle has been

proved. Such a displacement variational formulation is in all aspects similar to the analogous formulation

of classical (local) elasticity, except for the presence of two characteristic ingredients, that is, the non-

standard boundary conditions and the surface layer with membrane stresses, which altogether guarantee

that no long distance energy flows through the boundary surface towards the exterior.
The polar-gradient elasticity theory studied by Toupin (1962) and Mindlin (1964, 1965) has been also

addressed and compared with the herein proposed gradient theory under three points of view, namely: (i)

the state equations and related thermodynamic arguments; (ii) the total strain energy of a particle system at

a given strain state; (iii) the displacement equilibrium equations and related boundary conditions.

Generalizing the results to a n-th strain gradient material model in a three-dimensional space, the

substantial differences between the two models have been pointed out as follows:

(a) The polar-gradient material is local in nature and its strain and stress states are described by two sets of
strain and stress tensors as eðmÞ, rðmÞ (m ¼ 0; 1; . . . ; n), the latter being work-conjugate of the former,

respectively. A gradient material model can be derived from a polar-gradient one by considering the

higher order strain tensors eðmÞ (m ¼ 1; . . . ; n), defined as the mth-order spatial gradient of eð0Þ, and thus

its stress states turn out to be described by a (Cauchy) total stress r work-conjugate of the displace-

ment-driven strain tensor eð0Þ.

(b) The stress–strain laws of the polar-gradient model are some algebraic relations of the form

rðmÞ ¼ Umðeð0Þ; . . . ; eðnÞÞ (m ¼ 0; 1; . . . ; n), whereas those of a gradient model are a set of six PDEs of order

2n relating r to the displacement-driven strain e, and include a set of 3n nonstandard boundary condi-
tions.

(c) Two equal particle systems of respectively polar-gradient and gradient material, being in a same strain

state, possess equal total strain energies, though differently distributed in the volume V for the two mod-

els, with bulk and surface energy densities in the gradient one.

(d) For a polar-gradient material body, the solving displacement equilibrium equations have a mathemat-

ical structure like in the case of classical local elasticity (n ¼ 0), since in fact they consist in a set of three

PDEs of order 2ðnþ 1Þ, accompanied by a set of 3ðnþ 1Þ (either kinematic, or static) boundary con-

ditions, all of which are standard in nature, that is, they are expressed in the form of an alternative apt
to convey (either kinematic, or static) boundary data into the problem. For a gradient material body,

the solving displacement equilibrium equations are formally the same as for the polar-gradient body

and are accompanied by the same number, 3ðnþ 1Þ, of boundary conditions, three of which are of stan-

dard type, the other 3n are of nonstandard type.

The present study is being continued for further improvements. In particular, the existence of a surface

layer with membrane stresses needs being more satisfactorily justified on the basis of physical and micro-

structural arguments. Also, solution methods for the structural boundary-value problem need being de-
veloped, including FEM analyses, for which the displacement variational formulation here presented would

be useful. Here only a few simple applications to a one-dimensional bar in tension have been presented.

Applications of gradient elasticity theory to fracture mechanics problems are of interest (see e.g., Altan

and Aifantis, 1997; Vardulakis et al., 1996; Aifantis, 2003), in particular in relation to the crack-tip stress
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singularity. This has been already proved not to arise within nonlocal (integral) elasticity (Eringen, 1978,

1979), but deserves further study within gradient elasticity. Of interest would be also applications to

elasticity problems with the presence of thermal-like strains, whose influence on the gradient material

behavior is not a priori obvious. Are the strain gradients entering the gradient law to be gradients of the
total strain, or of the elastic one?

The proposed gradient elasticity theory is susceptible of being extended to other gradient material

models, as in plasticity and damage mechanics. The extension is by no means a straightforward one. First,

because of the way the extended nonstandard boundary conditions must be written: namely, they are to be

enforced upon the boundary surface that encloses the subdomain where plasticity, or damage, is being

developed and it thus––contrary to the elasticity case––is not coincident, in general, with the external

boundary surface, Polizzotto and Borino (1998); second, because the internal kinematic constraint giving

rice to the surface layer with membrane stresses proves to be relaxed. This extension will be achieved in a
subsequent paper.
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Appendix A. Notation

As a rule, a compact notation is used, with boldface letters to denote vectors and tensors. The scalar

product between vectors and tensors is denoted by suitably shaped dot marks, each with as many dots as

the number of couples of contracted indices, and each couple being formed with indices having the same

location (from the left) in the related tensors. For instance, if a ¼ faig, B ¼ fBijg, C ¼ fCijkg and

D ¼ fDijkhg are a vector and tensors, their scalar products can be written as follows: a � B ¼ faiBijg,
B : C ¼ fBijDijkhg, D..

.
C ¼ fDijkhCijkg, D<ðaCÞ ¼ fDijkhaiCjkhg, where the notation aC ¼ faiCjkhg is the

tensor product of a by C and the index summation rule for repeated indices is applied. Also, e.g.,
a �D..

.
C ¼ ða �DÞ..

.
C. Orthogonal Cartesian co-ordinates x ¼ ðx1; x2; x3Þ are used throughout. The symbol

oið�Þ denotes partial derivative of (Æ) with respect to xi, i.e., oið�Þ ¼ oð�Þ=oxi. The symbol r is the spatial

gradient operator, i.e. r ¼ foig, such that ra ¼ foiajg, whereas rs is the symmetric part of r, i.e.

rsa ¼ fðoiaj þ ojaiÞ=2g. Also, rm ¼ foi1oi2 . . . oimg for any integer mP 1, and the Laplacian operator is

indicated as jrj2 :¼ r � r ¼ oioi. An upper dot indicates time rate, i.e., _aa ¼ oa=ot. The symbol :¼ means

equality by definition; also, ð�ÞT means transpose of (Æ). Other symbols are defined in the text at their first

appearance.

Appendix B. Boundary integral transformation formula

Let A ¼ fApi1i2���img and B ¼ fBi1i2���img be tensors of, respectively, ðmþ 1Þth- and mth-orders, with mP 0;

(for m ¼ 0, A is a vector, B a scalar). A is defined over the boundary surface S ¼ oV of a spatial domain V ,
B over V . Both tensors are by hypothesis sufficiently regular as to make meaningful the surface integral:
Z

S
A� ðrBÞdS ¼

Z
S
Api1i2���imopBi1i2���im dS: ðB:1Þ
The symbol � denotes scalar product with complete index contraction for the tensor factor of lower order.

Assuming the surface S regular, let the gradient r ¼ fopg be decomposed in its tangential and normal
components at the generic point of S by writing (Mindlin, 1965; Mindlin and Eshel, 1968; Wu, 1992):



C. Polizzotto / International Journal of Solids and Structures 40 (2003) 7399–7423 7421
r ¼ �rrþ non ðB:2Þ
where denoting by I ¼ fdijg the unit second-order tensor
�rr :¼ ðI� nnÞ � r; on :¼ n � r ðB:3Þ
or, in index notation,
�rrp ¼ ðdpq � npnqÞoq; on ¼ nqoq: ðB:4Þ
Substituting from (B.2) into (B.1) gives
Z
S
A� ðrBÞdS ¼

Z
S
A� ð �rrBÞdS þ

Z
S
A� ðnonBÞdS: ðB:5Þ
The first integral on the right-hand side of (B.5) can be transformed as follows:
Z
S
A� ð �rrBÞdS ¼

Z
S

�rr � ðAT � BTÞdS �
Z
S
ð �rr � AÞ � BdS: ðB:6Þ
By the so-called surface divergence theorem (Toupin, 1962; Mindlin, 1965; Wu, 1992), the first integral on

the right-hand side of (B.6), in the case of regular surface as assumed here, transforms according to the

identity
Z
S

�rr � ðAT � BTÞdS ¼
Z
S
Kn � ðAT � BTÞdS; ðB:7Þ
where K equals twice the mean curvature of S at the integration point, that is, denoting by r1 and r2 the

principal curvature radii,
K ¼ �rr � n ¼ 1

r1
þ 1

r2
: ðB:8Þ
Therefore, substituting (B.7) into (B.6), then (B.6) into (B.5), and introducing for more compactness the

surface gradient G ¼ fGpg defined as
G :¼ Kn� �rr; ðB:9Þ
Eq. (B.5) finally takes on the form
Z
S
A� ðrBÞdS ¼

Z
S
ðG � AÞ � BdS þ

Z
S
ðn � AÞ � onBdS: ðB:10Þ
The peculiarity of the latter result is that the surface integrals on the right-hand side involve only values

of B and of its normal derivative. The identity (B.10) is of general applicability; it will be referred to as

surface integral transformation formula in this paper.
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